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Many studies have investigated the conversion of biomass derivatives to value-added products. However, the influence of different
factors on the reaction outcomes of these often-complex systems is not well understood. Herein, a statistical design of experiments
—specifically, response surface methodology—is applied to the glycerol electrooxidation reaction in a flow electrolyzer. Four
operational variables (glycerol concentration, NaOH concentration, flow rate, and catalyst loading) were investigated for their
effects on measurable responses of the electrochemical reaction: current density and Faradaic efficiency to a given product.
Independent optimizations of current density and Faradaic efficiency, as well as simultaneous optimization of both, were
investigated. Each optimization was evaluated using response surface coefficients to analyze sensitivity and simulated runs to
visualize the parameter space. These evaluations revealed contradictions in operating conditions required to simultaneously
maximize current density and Faradaic efficiency to C3 products glycerate and lactate, leading to low current densities and Faradaic
efficiencies. However, simultaneously maximizing current density and Faradaic efficiency to C1 product formate led to high current
densities and Faradaic efficiencies. These insights guide tuning GEOR production to maximize overall reactor performance.
Furthermore, this study outlines a framework for experimental evaluation and optimization of other electrolysis chemistries.
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Valorization of biomass-derived feedstocks is a rapidly growing
field that seeks to use renewable feedstocks to reduce greenhouse gas
emissions associated with chemical production. Of particular interest
is the conversion of biomass derivatives using electrified means, as
these conversions can be performed at ambient temperature and
pressure, and the scope of possible conversions is broad.1,2

A common biomass derivative is glycerol, a 3-carbon polyol
synthesized as a byproduct of biodiesel production. Glycerol can be
used as a feed in electrolysis processes for a variety of applications.3

For example, substituting anodic water oxidation with glycerol
oxidation, effectively side-stepping the energy-demanding oxygen
evolution reaction, can decrease the overall energy consumption of
cathodic conversions of interest such as hydrogen production and
carbon dioxide reduction.2,4–6 Alternatively, glycerol oxidation can
be pursued on its own as a way to produce value-added products.7,8

Prior work has demonstrated up to twelve possible products from
glycerol oxidation, including lactate,9–15 glycolate,16–18 formate,19–25

glycerate,26–31 oxalate,32–34 and others.35–39 Glycerol oxidation-based
electrified manufacturing of some of these products may hold promise
in terms of economics and life cycle arguments.

Prior work on the glycerol electrooxidation reaction (GEOR) has
primarily focused on identifying a single condition, typically a
catalyst identity or a catalyst loading that maximizes selectivity to
one of those products. Most efforts ascribe product selectivity to the
specific catalysts used, across the full spectrum of precious
metals,10,11,15–18,20,26–28,35,37,38 transition metals,9,19,21,22,24,25,32,33

and their combinations with nonmetals.12,23,39 Operational condi-
tions for these studies, however, vary widely. pH ranges chosen
typically stem from the catalyst used; however, electrooxidation
rates are typically higher in base, as deprotonated species are more
easily oxidized.7,40 Most studies utilize bulk electrolysis cells (e.g.,
3-electrode cells, H-cells, W-cells) to maximize selectivity and
overall glycerol conversion.9–37,39 Far fewer studies utilize flow

electrolyzers, despite flow electrolyzers currently comprising the
majority of industrial electrochemical reactors.30,38,41 To effectively
scale GEOR, especially in tandem with cathodic reactions such as
carbon dioxide reduction and hydrogen evolution, a detailed under-
standing of GEOR in flow electrolyzers must be developed.

Effectively scaling GEOR also requires deeper understanding of
the factors influencing reaction activity and stability, in addition to
selecting catalysts for their product selectivity. Selectivity, activity,
and stability manifest experimentally as, respectively, Faradaic
efficiency (FE), current density (CD), and durability, and all three
must be equally considered for a reaction to be scalable. Particularly,
the activity (CD) of a reaction must be sufficiently high to merit
scaling. Exactly what number, and at what scale, equates to
“sufficiently high” is still nebulous, with definitions ranging from
100 mA/(mg catalyst) to 1 A/(cm2 geometric area).8,42,43 However,
prior work on electrolysis scalability shows that maximizing CD
must be a consideration.44–46 Unfortunately, the literature investi-
gating GEOR continues to revolve around maximizing FE through
the development of new catalysts, with minimal attention paid to
current density. Several of these studies do not report current
density at all, or report low numbers in the range of
1–10 mA cm−2.10,12–14,16,18,19,21–23,26–33,35–37 Therefore, investi-
gating how to maximize reaction CD alongside FE (as well as
durability; beyond the scope of this study) is critical.

Studies optimizing GEOR outside of catalyst-related experimen-
tation are rare. In bulk electrolysis, the effects of cations and
electrolyte composition (i.e., concentration of glycerol and concen-
tration of electrolyte) have been studied.15,47,48 In the few flow
electrolysis studies, analyses have examined effects of applied
current, feed and/or electrolyte flow rate, and electrolyte
composition.49–51 The variety of catalysts used, combined with the
variation in factors investigated, obscures the intertwined effects of
these factors on CD and FE. Furthermore, optimizing one-factor-at-
a-time conflates local optima with the true global optimum. One way
to avoid this is by utilizing a statistical design of experiments to map
a larger variable space, while keeping the total number of experi-
ments small.zE-mail: kenis@illinois.edu
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Four prior studies have utilized statistical design of experiments
to investigate a range of parameters simultaneously for electroche-
mical utilization of glycerol.52–55 These designed experimentation
approaches allow for efficient exploration of the full parameter space
to identify global optima. Each of the prior studies uses a variation of
Response Surface Methodology (RSM) design of experiments,
intended to incorporate curvature into linear regression models
based on experimental results of multivariate processes.56

Two of these studies were performed in fuel cells.52,53 Briefly,
these studies investigated the effects of factors including anodic/
cathodic electrolyte concentration, temperature, and catalyst loading
on current/power density. Interestingly, one study concludes that the
most influential factor is temperature, whereas the other asserts that
it is electrolyte concentration and catalyst loading.

Two other studies used RSM design of experiments for GEOR in
bulk electrolysis: one in an acidic medium, the other in a basic
medium.54,55 The study exploring GEOR in an acidic medium
investigated electrolyte composition and applied current to max-
imize to either organic acid or “solvent” (i.e., dihydroxyacetone,
glycidol) compound classes.54 Glycerol concentration ([GLY]) and
electrolyte concentration were found to be most influential.

Peralta-Reyes et al. investigated GEOR in a basic medium, using
GEOR as a sacrificial anode reaction in parallel with cathodic
hydrogen production.55 They sought to maximize hydrogen produc-
tion while minimizing oxygen evolution via factors of temperature,
[GLY], and applied current. Applying RSM revealed that [GLY] and
the paired interaction between applied current and temperature is most
influential to maximize hydrogen production. These same two factors
as well as the interaction between [GLY] and temperature are most
influential to minimize oxygen evolution. This study, because of its
focus on optimizing water electrolysis, did not explore the effects of
the various factors on GEOR activity or product speciation.

The GEOR studies that employed RSM designs of experiments
demonstrated the utility of RSM to determine optimal operational
conditions for different electrocatalytic processes. Those working in
fuel cells evaluated the effects of factors on power density or current
density, and the electrolysis studies assessed the effects of factors on
product speciation, but each study is lacking in an area crucial to the
development of GEOR as an electrocatalytic process. Additionally,
the choice of and justification for factors and factor ranges across
these studies was not consistent. Generally, [GLY] was found to be
important, but other factors of interest—and the trends resulting
from those factors—varied widely. The same conclusion can be
drawn when reviewing related non-RSM research efforts on GEOR.

No investigation to date has simultaneously optimized activity and
selectivity of GEOR, without influence of one on the other. In other
words, no investigation has sought to optimize the current density and
Faradaic efficiency of a given product at the same time. Prior work
employed either one-factor-at-a-time optimization techniques or RSM
techniques for a single outcome. The valorization of biomass-derived
feedstocks via electrolytic conversion will require optimization of the
electrooxidation process in terms of activity (CD) and selectivity (FE)
simultaneously. Identifying the most appropriate operating parameters
of these electrified processes will be critical to evaluate their potential
for reducing emissions of chemical manufacturing.

In this work, we seek to address some of the voids in advancing
electrolytic processes for electrified chemical manufacturing.
Specifically, we apply Response Surface Methodology (RSM) to
the glycerol electrooxidation reaction in flow electrolyzers. The
effects of the four primary factors of interest—glycerol concentra-
tion, NaOH concentration, electrolyte flow rate, and catalyst loading
—are evaluated for their influence on maximizing current density
and maximizing of Faradaic efficiency to both glycerate and lactate,
two products of interest.

Results & Discussion

Overview.—In this work, we apply Response Surface
Methodology (RSM) to the glycerol electrooxidation reaction

(GEOR) on gold (Au) catalysts, in parallel with the hydrogen
evolution reaction on the cathode in liquid electrolyte flow electro-
lyzers. We consider four primary factors (variables) of interest:
glycerol concentration ([GLY]), NaOH concentration ([NaOH]),
electrolyte flow rate (EFR), and catalyst loading (CL). These factors
were selected based on the operation of industrial electrolyzers and
preexisting literature for GEOR on Au, which suggested that those
four factors would be most influential on the performance metrics of
current density and Faradaic efficiency.57,58 To determine factor
limits, we established feasible flow rate and concentration ranges for
our liquid electrolyte flow cell and determined an accessible range of
catalyst loadings (see Experimental section). This set our factor
ranges as follows: [GLY] and [NaOH], 0.01–4.0 M; EFR,
0.5–2.0 ml min−1; CL, 0.1–1.0 mg cm−2.

To evaluate Faradaic efficiency of multiple mechanistic path-
ways, we selected glycerate (GEA) and lactate (LA) as model
products of GEOR on Au. GEA is the first base-stable product of
GEOR, produced by two electrochemical (E) steps (E-E me-
chanism). LA is a competing product synthesized after the initial
electrochemical (E) step by a chemical (C) decomposition step (E-C
mechanism).59 While GEA and LA have been studied as co-products
and individual products of GEOR, tuning the reaction to produce one
or the other selectively remains a challenge.11,42,60

We chose three distinct responses for which we evaluated our
model: total current density (CD), Faradaic efficiency (FE) for GEA,
and FE for LA. The work is thus reported in three sections: (1)
Optimizing total CD, irrespective of product speciation; (2)
Optimizing FE to GEA or FE to LA separately; (3) Optimizing
CD simultaneously with the FE for either GEA or LA. While the
experimental approach described here pertains to GEOR specifically,
we posit that the employed RSM approach can be employed broadly
to other systems, including any electrolysis chemistry.

Application of response surface methodology to GEOR.—
Response surface methodology (RSM), particularly a Central
Composite Inscribed design, was chosen as the appropriate design
of experiments for this study, following the NIST Engineering
Statistics handbook.56 This design was chosen as it (1) covers the
experimental factor space of interest without creating impossible
conditions (e.g., negative flow rates); (2) identifies curvature present
in the factor space; (3) creates an inherently interpretable (so-called
“clear-box”) model; (4) identifies optimal operating conditions. In
this section, we describe the model employed in broad strokes, while
a detailed description and interpretation of each part of the model
can be found in the Experimental section.

For an RSM involving four factors– here represented by the
lowercase letters a, b, c, and d—the model takes the form of Eq. 1.

= + + + + + + +
+ + + + + +

[ ]

Response Aa Bb Cc Dd Eab Fac Gad Hbc

Ibd Jcd Ka Lb Mc Nd
1

2 2 2 2

To evaluate the results of the model, we highlight four key
features. The first two (quadratic terms, response surface coeffi-
cients) come from the form of Eq. 1; the second two (simulated runs,
optimal operating conditions) come from the software itself. Each
feature is described briefly below.

First, the model includes quadratic terms that illustrate the
curvature/nonlinearity of each factor, both in each variable’s
interaction with each other variable, as well as the paired interaction
with itself. Including these quadratic terms is critical because we
expect some kind of optimum point (i.e., a peak) in each of these
factors, which would introduce curvature.

Second, each term in the model is weighted by a coefficient
(indicated by the capital letters A-N in Eq. 1), which are the model’s
Response Surface Coefficients (RSCs). They demonstrate the
relative influence of each factor in the model, akin to a sensitivity
analysis. The magnitude of each RSC represents its influence on the
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response. The sign of the RSC indicates the direction of change of
the response. For a more detailed explanation, the reader is referred
to the Supplementary Information (Section SI).

Third, the modeling software can generate any number of
simulated “experiments” (herein termed “simulated runs”), giving
insight to the patterns in the full experimental parameter space.
These insights can be easily compared to prior work. The parameter
space can also be evaluated for alternative factor settings that can be
used to generate similar responses.

Finally, the software identifies factor combinations that give an
optimal response (i.e., maximum current density, maximum Faradaic
efficiency, or both) for each applied cell potential. This is typically
highlighted as the only outcome when using RSM. That said, it
becomes much more powerful when evaluated in the context of the
other three features described above, the RSCs, the simulated runs,
and the model curvature.

To employ the RSM approach, a certain number of actual
experiments (based on the factor ranges) must be performed,
generating a training set from which the model derives its insights.
For this study, each training set comprised 30 experiments with
differing conditions. This training set was used at 7 different cell
potentials (−0.2, −0.4, −0.6, −0.8, −1.0, −1.2, −1.4 V), each of
which was assigned its own sub-model and evaluated independently.
Thus, a total of 210 unique experimental conditions was tested.
Distributed within this training set were six replicate centerpoint
runs (i.e., experimental conditions in the middle of each factor
range), the variability of which yielded total model variability, as
expressed in the error bars in the model predictions. Factor settings
and the results of each of the sets of 30 experiments (CD, half-cell
potential, FE to a variety of products) can be found in the
supplementary information (Tables S1–S3). In summary, each
model for the three optimizations described below was obtained
using the full dataset resulting from the seven cell potentials tested
for each of the 30 experimental conditions.

The reader may wonder why the objective of this work could not
be achieved with a p-value analysis. Indeed, we do not use p-values
as a metric in our evaluation of the models, in contrast to previous
studies. Because our sample size is small (30 experiments) and our
HPLC spectra require deconvolution, analyzing solely by p-value
would significantly bias our analysis.61 In this work, we chose to

evaluate the relative influence of each factor on the response and
apply (electro-) chemical intuition to evaluate those results. A more
detailed discussion can be found in the Supplementary Information
(Section SII).

In lieu of p-values, we evaluate the model’s results using the
hallmarks of the RSM approach: RSCs, simulated runs, and
experimental testing of optimum factor combinations. We test these
for three separate types of optimizations in the next three sections:
(1) current density only, (2) Faradaic efficiency only, and (3) both
current density and Faradaic efficiency simultaneously.

Apply RSM to optimize current density only.—In our first
optimization, we identified optimal conditions for maximization of
total current density alone in our liquid-electrolyte flow cell. The
RSM model obtained for optimization of current density (Table S5)
predicted a maximum CD of 181 mA cm−2 at factor settings of
[GLY]= 1.80 M, [NaOH]= 3.30 M, catalyst loading
(CL)= 0.83 mg cm−2, and flow rate (EFR)= 1.41 ml min−1 at
−1.4 V cell potential (Table I). We then tested this outcome by
running the cell at these factor settings, which yielded a CD of
162 mA cm−2, in good agreement with the standard deviation based
on the variation in the six centerpoint experiments (Fig. 1).

Analysis of the RSCs produced by the model for the optimization
of current density alone reveals three terms with outsized effects:
[NaOH], [NaOH]2, and [GLY]2 (Fig. 2). The RSC for [NaOH] is
positive, indicating that as [NaOH] increases, current density
increases; meanwhile, the RSC for [NaOH]2 is negative, indicating
the existence of an optimum point between the minimum and
maximum of the range The combined effects of [NaOH] and
[NaOH]2 on current density likely mimic logarithmic growth, with
CD leveling off beyond [NaOH]= 3 M. For comparison, a p-value-
based analysis (Table S4) would reveal only a significant influence
of [NaOH] and not of [NaOH]2 and would therefore not capture the
effect plateauing. The RSC for [GLY]2 is large, relative to the RSC
for [GLY] (Fig. 2). This suggests that the effect of [GLY] on CD
resembles a “pure” inverse quadratic relationship, with an optimum
in between the minimum and maximum factor settings.

Figure 3 provides a graphical representation of the CDs predicted
for 1000 simulated runs as a function of [NaOH] and [GLY]
parameter space, for a cell potential of −1.4 V. Because of the

Table I. Results and operating conditions for each quantitative optimization, including those predicted by the model and those experimentally
obtained. Note that the parentheticals under “Maximize FE to GEA” indicate predictions/results at 0.01 M NaOH.

Optimization

Parameter Maximize CD
Maximize FE to

GEA

Maximize FE to
GEA with 4 M

NaOH
Maximize FE

to LA
Maximize CD &

FE to GEA

Results: Predicted by Model CD (mA/cm2) −181.2 N/A N/A N/A -97.1
FE to GEA (%) N/A 43.3 (44.4) 19.4 16.9 23.5
FE to LA (%) N/A 11.9 (N/A) 29.2 30.7 N/A

Results: Experimentally
Obtained

CD (mA/cm2) −162.0 −10.4 (−1.4) −63.2 −51.5 −68.5

FE to GEA (%) N/A 36.6 (20.5) 13.3 13.7 23.4
FE to LA (%) N/A 0.7 (N/A) 17.5 20.5 N/A

Operating Conditions:
Predicted by Model

Cell Potential
(V)

−1.4 −0.4 −0.4 −0.4 −1.2

[NaOH] (M) 3.3 0.1 (0.01) 4.0 4.0 2.4
[GLY] (M) 1.8 2.2 2.2 2.0 2.3
EFR (mL/min) 1.4 1.4 1.4 1.1 1.8
CL (mg/cm2) 0.8 0.5 0.5 0.6 0.3

Operating Conditions:
Experimentally Obtained

[NaOH] (M) 3.3 0.1 (0.01) 4.0 4.0 2.3

[GLY] (M) 1.8 2.2 2.2 2.0 2.4
EFR (mL/min) 1.4 1.4 1.4 1.1 1.8
CL (mg/cm2) 0.8 0.5 0.5 0.5 0.3

Journal of The Electrochemical Society, 2024 171 063506



dependencies described above, one can see that the CDs of the
simulated runs increase with [NaOH] until about 3 M, but then
plateau, and that the CDs exhibit an optimum for intermediate
[GLY]. Indeed, a zone of highest current density—over
150 mA cm−2

—is predicted to occur with high [NaOH] (above
3 M) and intermediate [GLY], between 1 and 3 M.

Prior work has shown that increased [NaOH] leads to increased
current for GEOR on Au catalysts.48 High [NaOH] (i.e., high pH) is
important to GEOR on Au for two reasons: (i) it hydroxylates and
thus activates the gold catalyst to Au(OH)ads, the putative active site

for GEOR; (ii) it facilitates the deprotonation of glycerol to a
glyceroxy anion, C3H7O3

−, the primary reactant on Au
surfaces.20,62,63

The reason for intermediate [GLY] to yield high CD can be
traced back to Au passivation mechanisms. Under high [NaOH] and
at high potentials, like the −1.4 V used here, Au(OH)ads can easily
be passivated through oxidation to Au(OH)3, Au2O3, and AuOOH,
none of which are active for GEOR.62,63 However, prior work has
been shown that increased [GLY] can delay the onset of Au surface
oxidation.62 None of the evaluated catalysts herein show any
surface-bound oxygen atoms (Table S5, Figs. S4–S5), and are
saturated with Au atoms, indicating that the optimum operating
conditions avoid surface passivation. In contrast, at high [GLY], the
fraction of deprotonated GLY is lower, reducing reaction rate, which
corresponds to lower predicted and observed CDs.

Apply RSM to optimize faradaic efficiency to either GEA or LA.—
In our second optimization, we identified optimal conditions for
maximization of Faradaic efficiency to glycerate (GEA). The RSM
model obtained for optimization of the FE to GEA predicted 44% FE
to GEA at factor settings of [GLY]= 2.24 M, [NaOH]= 0.01 M,
CL= 0.52 mg cm−2, and EFR= 1.36 mL min−1 at −0.4 V cell
potential (Table I). We then tested this outcome by running the
cell at these factor settings, yielding a FE for GEA of only 23%. This
discrepancy can be explained as follows: at this extremely low
[NaOH] of 0.01 M, GEOR on Au catalysts cannot proceed effec-
tively due to insufficient glycerol deprotonation and hydroxylation
of the Au surface.20,59 To alleviate this effect, we tested the same set
of optimal conditions predicted by the model, but with a [NaOH] of
0.1 M (Table I), yielding a FE for GEA of 36% (Fig. 1). The
predicted FE for GEA at this [NaOH] of 0.1 M is 43%, well within
the standard deviation based on the variation in the six centerpoint
experiments. Note that [NaOH]= 0.1 M provides acceptable GEOR
levels as evident from the tenfold increase in current density
(Table I).

RSCs indicate that [NaOH] has a large negative influence on FE
to GEA. To a lesser extent, the RSCs for [NaOH]2, EFR× [GLY],
[GLY], and EFR all also influence FE (Fig. 4). The negative sign of
the RSC for [NaOH] demonstrates that, primarily, FE to GEA
decreases with increasing [NaOH]; in combination with the weaker
positive sign of [NaOH]2, the net result resembles an exponential
decay. The influence of both [GLY] and EFR alone are positive,
indicating that increasing (decreasing) either one of them indepen-
dently should result in an increase (decrease) in FE to GEA.
However, the negative sign of the interaction term EFR× [GLY]

Figure 1. Comparison between the optimal results predicted by the RSM
model and the experimental results obtained during experimental testing of
the predictions. Three separate optimizations were performed: maximization
of current density only, maximization of Faradaic efficiency to glycerate
only, and maximization of both current density and Faradaic efficiency to
glycerate simultaneously.

Figure 2. Response surface coefficients generated by the RSM model for the
maximization of current density only. The model is most sensitive to
[glycerol]2, [NaOH]2, and [NaOH].

Figure 3. Interaction plot of the two most influential factors on current
density: [NaOH] and [glycerol]. Optimal conditions for maximizing current
density are seen at [NaOH] above 2.5 M when [glycerol] is between 1 and
3 M.
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indicates that increasing (or decreasing) both [GLY] and EFR
simultaneously will reduce each variable’s ability to increase FE to
GEA. Hence, each variable can be neither too high nor too low to
maximize FE to GEA.

Figure 5a provides a graphical representation of the FEs for GEA
predicted for 1000 simulated runs as a function of the parameter
space of [NaOH], [GLY], and EFR, for a cell potential of −0.4 V.
This 3D plot reveals the dominating influence of [NaOH] and [Gly]:
FE increases significantly with decreasing [NaOH] and at inter-
mediate [GLY]. The influence of EFR is less pronounced: high and
low EFRs are encountered throughout the [NaOH] and [GLY]
parameter space. Interestingly, the zone with highest FE to GEA—
low [NaOH] and intermediate [GLY] range—the EFRs are in the
intermediate range. These observed trends are echoed in the
interpretation of the RSCs above (Fig. 4).

The trends observed in this model for optimization of FE to GEA
agree with the mechanistic underpinnings of GEOR. Prior work has
shown that chemical (C) and electrochemical (E) steps compete in
GEOR on Au.11,20,59 The pathway to synthesize glycerate involves
two electrochemical steps (“E-E”). However, this E-E pathway
competes with an E-C pathway that synthesizes lactate. In particular,
the production of lactate is reported to occur at increased rates under
high concentrations of base, attributed to the fact that the chemical
mechanism is a base-catalyzed Cannizzaro reaction.11 This same
trend also is evident in the optimization of FE for Lactate (vide
infra).

Next, we attempted to follow the same approach to identify
optimal conditions for maximization of Faradaic efficiency to lactate
(LA). The data obtained from the sets of training experiments
exhibited high variability due to an experimental issue. Determining
the FE for any of the products formed requires analysis of the HPLC
chromatograms. The peak for lactate is convoluted with the peaks
for 3 other compounds: DHA, glycolate, and unreacted glycerol.
Automated deconvolution methods still led to run-to-run variability
between 10 and 40% (Table S3.2). The RSM approach fails to
produce statistically relevant predictions for FEs to LA (p> 0.05;
Table S7) due to these large errors in the experimentally determined
FEs to LA at different centerpoints. Thus, we do not compare the
model’s predicted optimal performance and the corresponding
validation experiment, as visualized for other optimizations in
Fig. 1. For the same reason, we do not provide an analysis of
RSCs for FE to LA, as provided for FE to GEA in Fig. 4. We still
provide Fig. 5b, a graphical representation of the FEs for LA
predicted for 1000 simulated runs as a function of the parameter
space of [NaOH], [GLY], and EFR, for a cell potential of −0.4 V.
While these predications cannot be used with confidence for
quantitative predictions (i.e., determining a set of operation para-
meters yielding optimal FE to LA), the information can be used
qualitatively to predict parameter space ranges of high performance.

The trends observed in this model for optimization of FE to LA
can also be interpreted based on mechanistic underpinnings. The
highest FEs to LA occur at the highest [NaOH] (Fig. 5b). Note that
the EFRs leading to best performance in FE are generally lower for
optimization to LA than to GEA, as evident from the predominantly
much lighter bars in Fig. 5b vs Fig. 5a. The lower EFRs (i.e., longer
reactor residence times) for optimization to LA indicate that the

Figure 4. Response surface coefficients generated by the RSM model for the
maximization of Faradaic efficiency to glycerate only. The model is most
sensitive to [NaOH]2, flow rate × [glycerol], [glycerol], [NaOH], and flow
rate.

Figure 5. Interaction plot of the three most influential factors on Faradaic efficiency: [NaOH], [glycerol], and flow rate. Note that the axes of [NaOH] are
reversed in (a) vs (b) for data visibility. (a) Optimal conditions for maximizing Faradaic efficiency to glycerate are seen at [NaOH] less than 0.5 M when flow
rates are above 1.25 ml min−1 and [glycerol] is between 1 and 3 M. (b) Optimal conditions for maximizing Faradaic efficiency to lactate are seen at [NaOH]
above 3.5 M when flow rates are below 1.25 ml min−1 and [glycerol] is between 1 and 3 M.
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chemical step of the E-C mechanism requires additional time to
proceed. Conversely, the higher EFRs, i.e. shorter reactor residence
times, for optimization to GEA indicate the second electrochemical
step of the E-E mechanism requires less time to proceed. These
trends are in good agreement with both prior work11,20,59 and with
the quantitative model for FE to GEA (vide supra).

Next, we compared the results for optimization of the FEs to GEA
and to LA. The operational parameter range of optimum performance
for both is different, with the major difference being the [NaOH]
range. Thus, we decided to test the effects of [NaOH] on product
speciation to ascertain whether [NaOH] was the driving factor in
speciation between the E-E and E-C pathways of GEOR. Using the
model of FE to LA, despite its aforementioned lack of accuracy, to
identify an approximate range of optimal operating conditions for
production of LA, we found factor settings of [GLY]= 2.0 ± 0.5 M,
[NaOH]= 4.0 ± 0.3 M, catalyst loading (CL)= 0.6 ± 0.1 mg cm−2,
and flow rate (EFR)= 1.1 ± 0.2 ml min−1 at −0.4 V cell potential
(Table I). The ranges were determined by looking at the 1000
simulated runs and determining the optimum range as the FE
maximum ±5%. Running the cell at these factor settings yielded a
FE to LA of 20%, a 20-fold increase from the FE to LA of under 1%
found optimizing for FE to GEA (Fig. 6). At these conditions, the FE
to GEA decreased by 22% (from 36% to 14%). Running the cell at
optimal factor settings predicted for optimization of the FE to GEA,
yet with a [NaOH] of 4 M (optimum for LA) instead of 0.1 M, yielded
a FE to LA of 17% and an FE to GEA of 13% (Fig. 6). These FE
values for GEA and for LA are nearly identical to those obtained
using optimal operating conditions for FE to LA, indicating that the
differences in other factors are of minimal influence when tuning the
pathway of GEOR on Au. This further underscores that low [NaOH]
promotes the E-E pathway that produces GEA, and high [NaOH]
promotes the E-C pathway that produces LA.

Apply RSM to optimize current density and faradaic efficiency
simultaneously.—In our final optimization, we sought to identify
optimal conditions for simultaneous maximization of current density
and Faradaic efficiency to GEA, and compare these results to
simultaneous optimization to LA. The RSM model obtained for
simultaneous optimization of CD and FE to GEA (Table S10)
predicted a maximum CD of 97 mA cm−2 and maximum FE to GEA
of 23% at factor settings of [GLY]= 2.27 M, [NaOH]= 2.40 M,
CL= 0.27 mg cm−2, and EFR= 1.81 ml min−1 (Table I). Running
the cell at these factor settings yielded an experimentally observed
CD of 69 mA cm−2 and an FE to GEA of 23%, in good agreement
with the standard deviation based on the variation in the six
centerpoint experiments (Fig. 1). Crucially, these conditions to
optimize CD and FE simultaneously occur at a different cell
potential (−1.2 V) than the optimizations for current density alone
(−1.4 V) or Faradaic efficiency to GEA alone (−0.4 V), indicating
optimization for one response or the other, unsurprisingly, does not
necessarily lead to optimal conditions for both responses.

RSCs for simultaneous optimization of CD and FE to GEA
indicate that all four factors meaningfully influenced the responses
(Fig. 7). While [GLY], [GLY]2, [NaOH], and [NaOH]2 have the
largest influences, CL× EFR, EFR× [GLY], and [NaOH]× [GLY]
are also relevant. The opposing influence of some of the factors is
notable: [NaOH]× [GLY] is positive for FE, but negative for CD;
[NaOH] is positive for CD, but negative for FE; and CL× EFR is
negative for FE, but essentially zero for CD. Figure 7 also
demonstrates the difficulty of pinpointing optimal operating condi-
tions for GEOR: when every factor matters, testing all of them one-
factor-at-a-time becomes impractical. A statistical method such as
RSM helps in understanding the interdependencies of the reaction,
and in selecting operating conditions that lead to the most desirable,
feasible performance.

To quantitatively interpret the results of the multi-objective
optimization for CD and FE to GEA, we plot the simulated
responses of CD and FE to GEA against each other (Fig. 8a). For
each simulated data point for a specific FE and CD combination, the
model calculates a “desirability” value based on user-inputted
maximum and minimum values. Hence, the absolute value of
“desirability” is arbitrary, but relative values are of interest.

Figure 6. Demonstration of the effect that tuning [NaOH] has on product
speciation in glycerol electrooxidation at -0.4 V. Optimization for max-
imizing glycerate results in 36% Faradaic efficiencies to glycerate and under
1% Faradaic efficiency to lactate with 10 mA cm−2 current density.
Conversely, optimization for maximizing lactate results in 14% Faradaic
efficiency to glycerate and 20% Faradaic efficiency to lactate with over
50 mA cm−2 current density. Testing the same set of optimization conditions
for maximizing glycerate but changing the [NaOH] from 0.1 M to 4 M
results in Faradaic efficiencies and current densities akin to that of the
optimization for maximizing lactate.

Figure 7. Response surface coefficients generated by the RSM model for the
simultaneous maximization of both current density and Faradaic efficiency to
glycerate. The model is most sensitive to [glycerol]2, [NaOH]2,
[NaOH] × [glycerol], catalyst loading × flow rate, [glycerol], and [NaOH].
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Figure 8 uses the same values for both plots; input values can be
found in the supplementary information (Tables S5–S10). Figure 8a
reveals that for GEA the responses align themselves in a curve, with
the most “desirable” points on the top-right of the plot. This curve, a
Pareto front, represents the limits of the optimization. The graph
indicates an “optimum front” roughly connecting CD and FEs of
75 mA cm−2 and 26% to 115 mA cm−2 and 15%. Increasing one
value within this range leads to a gradual decrease of the other value
(trade off). The optimum of 97 mA cm−2 CD and 23% FE to GEA
predicted by the model is indeed on this front and was confirmed
experimentally (vide supra; Fig. 1). As discussed above, the
performance limit results from the two responses’ opposite require-
ments for [NaOH]. With current density requiring high [NaOH] and
FE to GEA requiring low NaOH, any optimization for high activity
will require significant reductions in overall selectivity to GEA.
Conversely, optimization for selectivity to GEA will reduce activity.

We then sought to identify optimal conditions for simultaneous
maximization of current density and Faradaic efficiency to LA.
From above, we know that optimizing CD as well as optimizing FE
to LA requires high [NaOH]. The model for simultaneous optimiza-
tion of CD and FE to LA (Fig. 8b) showed that the optimal
conditions for maximizing CD and FE to LA are observed for a
much lower cell potential (−0.4 V) than the optimum for CD and FE
to GEA (−1.2 V, Table S10). The plot of the 1000 simulated
responses of CD and FE to LA (Fig. 8b) looks very different from
the equivalent plot for GEA (Fig. 8a). Whereas the latter exhibits
Pareto optimality along a range of CD and FE to GEA combinations,
the former exhibits a very narrow range of optimum CD and FE to
LA combinations, more akin a Pareto “point” at a CD of approxi-
mately 35 mA cm−2 and a FE to LA of 30%. In either direction away
from the optimum Pareto “point,” the value of the other response
drops off. Furthermore, for LA, the achievable current densities are
significantly lower due to operation at much lower potentials.
Increasing to higher potentials does not lead to improvements in
current density and FE to LA simultaneously (Tables S9 and S10).

At −0.4 V, the optimization for FE to LA, as well as the
experiment using the factor settings for optimum FE to GEA with
high [NaOH], both demonstrate markedly higher CD than the
optimization for FE to GEA (51 and 63 vs 10 mA cm−2, respec-
tively; Fig. 6). Despite this improvement in CD, the FEs for LA
remain significantly lower than the FEs to GEA at the same
potential. Any higher potential decreases the predicted FE to LA
by up to half, with minimal increase—if at all—to CD (Table S10).

These seemingly contradictory results demonstrate that FE to LA
and CD cannot be improved with increasing potential. Alongside the
odd shape of the response for simultaneous optimization of CD and
FE to LA (Fig. 8b), these conflicts can be understood when looking
at the mechanism of GEOR to LA on Au. Production of LA relies on
the unstable product of an electrochemical step that is common to
both GEA and LA production. This intermediate must chemically
decompose to form LA. LA production is optimized using low EFR
(high residence time), but a long residence time also provides the
opportunity for both the unstable intermediate and any formed LA to
electro-oxidize further to GEA and to acetate/formate, respectively,
as visualized in Fig. S1. To minimize the latter pathways, the system
must be operated at low potential; minimizing these pathways also
reduces electro-oxidative activity, suppressing CD. This effort to
simultaneous optimize CD and FE to LA demonstrates the difficulty
in producing LA selectively and with high activity.

While applying the RSM approach to simultaneous optimize the
CD and FE (to LA or GEA) yielded an understanding of the possible
maximum achievable selectivity and rate combinations, it also
highlighted that achieving high overall selectivities (i.e. over 50%)
seems to be impossible when performing GEOR under the condi-
tions tested (Au catalysts, flow electrolysis cell, operational ranges
as specified above). We focused on glycerol oxidation to GEA or LA
because of the putative added value of these two products. Their low
maximum achievable yields begged the question whether other
products of GEOR should be pursued. Specifically, different
mechanistic pathways, upon further oxidation of intermediate C3 and
C2 products, lead to the common C1 product of formate (FA; Fig.
S1). Hence, we applied the RSM approach to conceptually explore
possible outcomes of simultaneous maximization of current density
and Faradaic efficiency to formate (FA).

The RSM model obtained for simultaneous optimization of CD
and FE to FA predicted a maximum CD of 177 mA cm−2 and
maximum FE to FA of 50% at factor settings of [GLY]= 1.82 M,
[NaOH]= 3.22 M, CL= 0.72 mg cm−2, and EFR= 1.71 ml min−1

(Table S12). As expected, these responses are much higher than the
optimized CDs and FEs for C3 products (increases of over 60 and
145 mA cm−2 in CD and of 27% and 20% in FE compared with
GEA and LA, respectively). RSCs for simultaneous optimization of
CD and FE to FA indicate that all four factors meaningfully
influenced the responses (Fig. S2), and as such we plot the simulated
responses (CD and FE to FA) against each other to quantitatively
interpret the multi-objective optimization (Fig. 9a). The ranges of

Figure 8. Pareto fronts for simultaneous optimization of current density and Faradaic efficiency to (a) glycerate and (b) lactate. Simultaneous optimization of
current density and Faradaic efficiency to glycerate is more desirable due to higher achievable current densities. Conversely, simultaneous optimization of current
density and Faradaic efficiency to lactate is less desirable due to lower achievable current densities.
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CD, FE to FA, and desirability are double those of GEA. Because
the scales are vastly different, we have colorized them differently
than the data shown in Fig. 8. Figure 9b highlights the vastly
different ranges of accessible combinations of CD and FE to X for
GEA, LA, and FA: the very different achievable maximum values
for each, and the broad range of accessible combinations for FA.
Clearly, simultaneously maximizing CD and FE to FA is more
straightforward, and results in more industrially relevant CD and FE
than optimizing for production of a C3 product like GEA and LA.
Formate and its corollary products (C2 compounds oxalate, glyco-
late, and acetate) may provide a pathway for optimization that
produces a binary, easily-separable mixture with high selectivity and
high activity simultaneously.

Conclusions

In sum, this work utilized the framework of a Response Surface
Methodology design of experiments to efficiently evaluate the influ-
ence of [NaOH], [glycerol], catalyst loading, and electrolyte flow rate
on current density (activity) and Faradaic efficiency (selectivity) of
the glycerol electrooxidation reaction. Applying this framework

to the predetermined factor ranges ([NaOH]= [GLY]= [0.01, 4 M];
CL= [0.1–1.0 mg cm−2; EFR= [0.5–2.0 ml min−1]) yielded a set of
30 distinct conditions, which were then experimentally evaluated
at 7 cell potentials. The experimental data was then fed back to the
software to produce a training set, which generated models for
optimizing current density alone, optimizing Faradaic efficiency to
a particular product only, or optimizing current density and
Faradaic efficiency simultaneously. The model was then used to
generate response surface coefficients, simulated runs (here 1000),
and optimal operating conditions. Model outcomes were validated
using confirmation experiments for all three optimization goals.
The combined graphical representations of these model outcomes
and experimental data were then evaluated and interpreted in the
context of GEOR, which revealed insights beyond those that could
have been obtained using a traditional p-value approach alone.
Specifically:

• [NaOH] and [GLY] are the two most important factors in
optimizing overall current density but are relevant in different ways.
Maximizing current density occurred at [NaOH] > 2.5 M and 1M ⩽
[GLY] ⩽ 3M.

Figure 9. (a) Pareto front for simultaneous optimization of current density and Faradaic efficiency to formate. This figure is colorized differently than Fig. 8 to
underscore the vastly different scales; a direct comparison can be seen in Fig. S3. While formate is a less-valuable product than glycerate or lactate, the reaction is
not limited by [NaOH] or chemical decomposition and can reach over 200 mA cm−2 current density and over 50% Faradaic efficiency. These responses well
exceed that which can be achieved by optimizing for C3 products. (b) Comparison of optimizations for Faradaic efficiencies to glycerate, lactate, and formate on
the same scales. Formate has the widest range of current density and Faradaic efficiency, as well as the highest desirabilities.

Journal of The Electrochemical Society, 2024 171 063506



• Product speciation pathways for the C3 products lactate and
glycerate are controlled primarily by [NaOH], with some influence
of EFR, in line with prior mechanistic understanding. Specifically,
increasing [NaOH] and decreasing EFR increases the prevalence of
the E-C (E-E) pathway to lactate (and vice versa for glycerate).
Maximizing Faradic efficiency to lactate: [NaOH] > 3.5 M, 1 M ⩽
[GLY] ⩽ 3 M, and EFR ⩽ 1.25 ml min−1. Maximizing Faradic
efficiency to glycerate: [NaOH] < 0.5 M, 1 M ⩽ [GLY] ⩽ 3 M, EFR
> 1.25 ml min−1; both at –0.4 V cell potential.

• Higher current densities can be achieved when optimizing
current density and Faradic efficiency to glycerate vs current density
and Faradic efficiency to lactate. On first sight, this was surprising,
as maximizing current density and maximizing Faradic efficiency to
glycerate have opposite [NaOH] requirements (high for current
density, low for Faradic efficiency to glycerate). However, reason-
able (>20%) Faradic efficiencies to glycerate can be achieved at
higher cell potentials, whereas reasonable Faradic efficiencies to
lactate can only occur at lower cell potentials that suppress further
reaction and side product formation. Optimization for a product that
can be synthesized at higher cell potentials, such as glycerate, is
more desirable for overall cell performance because higher cell
potentials most typically increase current density.

• Investigation of the simultaneous optimization of current
density and Faradic efficiency to formate revealed achievable current
densities above 200 mA cm−2 and Faradaic efficiencies above 50%
(performance more appropriate for scaling) despite formate being a
less-valuable product with a smaller market than either glycerate or
lactate.

Notably, the above insights obtained using RSCs, simulated runs,
etc. could not be derived using a p-value analysis alone, because the
latter arbitrarily assigns “significance” to factors but provides no
further insight on the responses’ sensitivity to those factors (RSCs)
or on the overall appearance of the parameter space (simulated runs).
For example, p-value analysis would have discarded the model of
Faradic efficiency to lactate entirely, such that no meaningful
speciation evaluation could be performed. Models of complex
systems need to be evaluated thoughtfully and holistically in the
context of the reactions and processes they represent.

To truly assess the potential of GEOR as an economically
feasible process to synthesize different or specific products, more
considerations of greater breadth must be made. For instance, the
cost of product separation must be factored in. Processes needed to
separate many of these mixtures of low molecular weight acids have
not been developed, and/or have not been evaluated in terms of
economic feasibility (including energy consumption) at scale. Based
on the outcomes of the work here, one would expect that separating a
binary mixture of predominantly formate and a corollary C2 product
to be less costly than separating a mixture of multiple similar
products (and unreacted glycerol) produced under the conditions of
optimizing Faradic efficiency for either glycerate or for lactate.

This study only considered GEOR on Au. Other catalysts can be
evaluated in a similar manner. Both non-noble catalysts and
homogenous (solution-phase) redox mediators hold promise for
GEOR, as they cannot be over-oxidized and thus deactivated;
however, the mechanisms of GEOR on these catalysts are different
from the GEOR mechanism of noble catalysts such as Au. Applying
RSM to GEOR using catalysts such as Ni and redox mediators such
as TEMPO may enable synthesis of higher-value products under
high current density regimes.

This work employed a microfluidic liquid electrolyte flow
reactor. Scaling GEOR beyond the benchtop may require moving
to membrane electrode assembly (MEA)-type electrolysis cell
configurations that may affect the experimental outcomes (achiev-
able current densities, Faradic efficiencies). Further research can
elucidate such differences resulting from electrolysis cell configura-
tion and operational regimes.

Most importantly, assessment of opportunities for scaling GEOR
to a sustainable, electrified manufacturing method for certain value-

added products will require a critical evaluation of the feedstock. In
this work, 99.9% pure glycerol was used, whereas in envisioned
application of GEOR at scale, the feedstock would be an industrial
waste stream frequently referred to as “crude glycerol.” The glycerol
content in “crude” rarely passes 80% purity, with the remainder of
the solution usually comprising methanol, NaOH, and water. A
detailed assessment of how this purity affects GEOR performance in
the three key dimensions of activity, selectivity, and stability is
crucial to establish the scope of GEOR for electrified chemical
manufacturing. Future investigations of GEOR should consider the
various aforementioned factors to optimize activity, product selec-
tivity, stability, and cost.

In sum, this work reported an accessible and interpretable
framework for integrating experimental electroanalysis and statis-
tical modeling insights of complex electrochemical systems. While
this study focused on the glycerol electrooxidation reaction, the
methodology should be broadly applicable to other systems to
efficiently investigate their multidimensional parameter spaces.

Experimental

Preparation of electrolytes and solvents.—All electrolyte solu-
tions of varying compositions and concentrations were prepared by
dissolving the appropriate amounts of NaOH (Ward’s Science,
reagent grade) and/or glycerol (Fisher Chemical, certified ACS)
into deionized water. 0.5 M and 5 mM H2SO4 (Sigma Aldrich, ACS
reagent, 95.0%-98.0%) for HPLC analysis were prepared in the
same manner.

Preparation and imaging of electrodes.—The anode (cathode)
electrocatalysts are comprised of Au (Pt) deposited using a sputter
system with DC argon plasma (Orion 3, AJA) on gas diffusion
electrodes (GDEs; Freudenberg H23C6, Fuel Cell Store). Actual
catalyst loading was determined by weighing the GDEs before and
after deposition. All cathode (Pt) loadings were 1.0 ± 0.1 mg cm−2.
The targeted anode (Au) loading varied with the experimental
conditions generated by the analysis software; targeted loadings
and actual loadings can be found in Tables I and S1. All Au loadings
were within 10% of the targeted loading. SEM/EDX (Axia
ChemiSEM, Thermo Fisher Scientific) was performed to charac-
terize the electrodes (Table S5, Figs. S4–5). Prior to imaging,
catalysts were rinsed thoroughly with deionized water and dried
under nitrogen, as described previously.64 Images were taken at
5,000x or 10,000x magnification and a working distance of
approximately 16 mm. Acceleration voltage of 20.00 kV was used
at a pressure of 0.005 Pa. Image resolution was set to 768× 512 and
each image was acquired for 30 s. All images are presented without
color-correction and without aspect-ratio alteration; however,
images have been cropped for ease of viewing. All information
cropped from the images is reported above.

Electrochemical flow reactor operation.—We utilize a liquid
electrolyte flow cell with single-pass flow, similar to previous
work.65,66 This electrolyzer is of the same dimensions as described
previously, and includes two PEEK liquid electrolyte flow channels
separated by an anion exchange membrane (Fumasep Fumion FAA-
PK-75, Fuel Cell Store). Both the anode and cathode gas compart-
ments are closed to the atmosphere, such that the gas generated must
flow out of the cell in the same manner as the liquid electrolyte and
products. The cell is operated at ambient temperature and pressure.
Reference electrodes (RE-5B, Ag/AgCl, BASi) were placed up-
stream of the flow cell and connected individually to measure half-
cell potentials. The potentials in this study are reported without any
IR correction.

We collected experimental data for 7 sets of 30 experiments.
Current density data were obtained using a potentiostat (Reference
600, Gamry) by allowing the system to equilibrate for one minute,
then averaging over the last three minutes of each experiment and
dividing by exposed geometric area of electrode (1 cm2). For the last
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two minutes of each experiment, anolyte effluent was collected in a
vial (with total volume collected dependent on the flow rate tested).
0.5 ml of the collected effluent was immediately acidified with
0.5 ml of 0.5 M H2SO4 to limit further base-catalyzed chemical
reactions. Total experiment time at each set of experimental
conditions thus took four minutes.

Product analysis.—Prior to experimentation, 0.5 ml of unused
anolyte was collected and acidified to determine the solution
baseline composition for HPLC analysis, as glycerol in alkaline
media will react slowly to some of the products also formed during
electrooxidation.59 All liquid products were analyzed using high-
performance liquid chromatography using an ion exclusion column
with diluted H2SO4 mobile phase flowed at 0.6 ml min−1 (Shimadzu
Nexera; Bio-Rad Aminex HPX 87H; 5 mM H2SO4). Column
temperature was maintained at 60 °C and separated products were
detected with a UV–vis detector. Faradaic efficiencies were obtained
from the raw HPLC data using a MATLAB script for maximum
consistency and accuracy of spectral integration, with mathematics
following prior work.67 The MATLAB script was derived from
resources developed by O’Haver,68 and is available upon request.

Factor and factor range determination.—Most sources of
industrial waste glycerol streams contain a significant fraction of
NaOH.69 Thus, we elected to use NaOH as the electrolyte salt
required for conductivity, reactivity, and alkalinity. A 2 M NaOH
solution was used as the catholyte. Control experiments flowing 4 M
NaOH in the catholyte (anolyte) and 0.01 M NaOH in the anolyte
(catholyte) at 0.5 ml min−1 for 10 min, under an applied potential of
−1.6 V, showed negligible changes in solution conductivity.
Because these tests were run at conditions more extreme than any
of the experimental conditions used in this study, we concluded that
electrolyte crossover between the anolyte and catholyte does not
occur to a significant degree, and thus any difference in ionic
strength between anolyte and catholyte does not affect the experi-
mental outcomes.

To determine the operating ranges of our cell, a series of cell
failure tests was conducted (Fig. S3). Cell failure in the context of
this study equals so-called “flooding,” where electrolyte solution
permeates the hydrophobic microporous layer and carbon-fiber
substrate of the gas diffusion electrode and seeps out into the gas
chambers on either side of the electrolysis cell. This phenomenon
has been described in prior work.70,71 For the study reported here,
we identified the range of operational conditions over which flooding
can be avoided or minimized. Key factors included electrolyte
viscosity, flow rate, and composition. Viscosity was measured on
solutions of anolyte (NaOH, glycerol, and DI water) ranging from
[NaOH]= [GLY]= 0.01 M to [NaOH]= [GLY]= 7 M, and those
solutions were then evaluated in the liquid electrolyte flow cell at
electrolyte flow rates (EFRs) from 0.5–2.0 ml min−1. At
EFR= 2.0 ml min−1, the cell failed with any solution viscosity
beyond 5 cP (corresponding to [NaOH]= [GLY]≈ 4 M). Beyond
this limit of 10 cP ml min−1, the liquid electrolyte flow cell flooded.
Because of this limit, increasing EFR beyond 2.0 ml min−1 was
impractical, as it severely curtailed the operational range of [NaOH]
and [GLY]. For practical reasons, the lower limit of EFR was set at
0.5 ml min−1, so sufficient electrolyte (1 mL) could be collected
in the 2 min effluent collection time during each experiment. Thus,
we set the EFR range to [0.5 ml min−1, 2.0 ml min−1] and
NaOH]= [GLY]= [0.01 M, 4.0 M] to encompass the widest possible
range of operating conditions that avoid flooding-related problems. A
catalyst loading (CL) range of [0.1 mg cm−2

–1.0 mg−1 cm−2] was
used, with the upper limit set by the sputter system used. A loading of
1 mg cm−2 roughly corresponds to 590 nm of Au deposited on our
electrodes, within the 600 nm system limit.

RSM model setup.—To create the experimental training set
described in this study, we used JMP Pro 17 software and its inbuilt

Response Surface Design DOE script. Inputting our factor ranges
and desired responses (vide supra) into the script generated the
experimental training set. After inputting experimental results into
the script, the model is generated by performing polynomial linear
regression (PLR). PLR uses a line of best fit to evaluate the
experimental data and generates the rest of the information used to
evaluate the model, such as response surface coefficients (RSCs) and
optimum points. The complete set of results for each optimization
(CD; FE to GEA or to LA; and both) can be found in the
Supplementary Information (Tables S5–S10).

RSM model evaluation.—In accordance with statistical best
practices,61,72–74 all models were evaluated for their statistical
robustness prior to analysis in the Results & Discussion. To identify
models suitable for analysis, lack-of-fit p-values were evaluated in
the context of the optimization. Significant lack-of-fit p-values
(<0.05) indicate models where additional factors are needed to
explain model behavior. In our optimization for current density
alone, all sub-models showed a significant lack-of-fit. This is to be
expected, as we did not include any factors related to current density
from the cathodic hydrogen evolution reaction. However, we held
our cathodic factors constant (apart from EFR, which was varied in
tandem to maintain consistent electrode wetting). EFR was not the
most influential contributor in any sub-model. Furthermore, ionic
strength did not influence results (vide supra). Thus, in accordance
with the guidance of the American Statistical Association (vide
supra), these lack-of-fit p-values can be reasonably ignored. For
Faradaic efficiency to glycerate, however, lack-of-fit p-values were
identified for only some of the sub-models: −0.2 V, −0.8 V, and
−1.4 V. For −0.2 V, the prevalence of chemical reactions during the
electrolysis process likely overshadow the electrolytic reaction;
similarly, for −1.4 V, contributions from the onset of the oxygen
evolution reaction are likely influences on product speciation
variation. In contrast, the origin of the lack of fit at −0.8 V in the
model is less clear. It is possible that HPLC chromatogram
deconvolution is more complex at this intermediate potential, where
the extent of the reaction is less well-controlled. To ensure that the
data was interpreted solely on the basis of electrochemical reactions
and was not influenced by inconsistencies in data analysis or other
concurrent reactions, all three of these potentials were excluded
from the analysis of Faradaic efficiencies and the analysis of the
multi-objective (current density and Faradaic efficiency simulta-
neously) optimizations.

To ensure the model gave sensible predictions, leverage-based
extrapolation control was used. In essence, utilizing leverage-based
extrapolation control limits our predictions to areas where our
predicted responses do not deviate from the mean more than actual
responses deviate from the mean seen in the data set. Leverage is
defined as the quantification of the influence of the observed
response on its predicted value and is a measure of the distance
between a particular data point’s response and the average of the
responses for all data points. As an example, in our data set, the
leverage for experiment X’s current density equals (experiment X’s
current density) minus (the average of current densities for all
experiments). For leverage-based extrapolation control, the max-
imum extrapolation threshold is set as the maximum leverage. Thus,
we cannot extrapolate any value beyond the maximum value of
leverage.

The models were also evaluated on their balance (lack or
presence of skew), using maximum correlation of estimates (COE)
and the variance inflation factor (VIF), which are typically inter-
preted together. Both VIF and COE indicate whether collinearity is
present. Collinearity is defined as correlation between two factors (x-
variables), such that they cannot independently predict the value of
the response (y-variable). If two factors are collinear, they each
explain some of the variation in each other, instead of in the
response. Both are directly related to the imprecision in generating
“real-world” factors; for example, both COE and VIF are increased
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when using a solution of concentration 1.05 M instead of the model-
generated 1.047786 M. Interpreting both factors together provides
insight into the overall skew present in the model.

COE calculates the theoretical correlation of each regression
coefficient and depends on the predictor values and the intercept
term generated in the model. Generally, COEs less than 0.3 indicate
little to no imbalance; between 0.3 and 0.5 indicate some, but an
acceptable amount of imbalance; and values from 0.5 to 1 show a
high amount of imbalance that requires further inspection. All
models generated show a COE of 0.5712 (Tables S5–S7). To
ascertain whether our models were able to provide reliable predic-
tions, we evaluated VIFs. VIFs quantify how much the variance of a
regression coefficient is increased due to its factor’s correlation to
other variables; the square root of a VIF describes the increase in
standard error of a factor’s coefficients from interactions with other
factors relative to the standard error of the factor’s coefficients if
they had no correlation to other factors. For example, a VIF of 4
indicates that the standard error of the response surface coefficient is
twice as large as the coefficient that does not interact with other
factors. Generally, VIFs less than 5 are considered to show low
model imbalance, while VIFs greater than 5 show high model
imbalance. All models generated in this study had VIFs less than
1.5, indicating low model imbalance (Tables S5–S7). The low VIFs
combined with the high COEs indicate that, indeed, the RSM models
for CD, FE, and CD & FE simultaneously, are imperfect, but
acceptable for analysis. Likely, the high COEs stem primarily from
the variance in HPLC data discussed throughout the text (vide supra);
the low VIFs indicate that the variance in “real-world” factor values
from those generated by the models (i.e., using 1.5, rather than
1.48729) do not add much imbalance. This highlights the importance
of binary or easily separable mixtures, as quantification of large
numbers of products can introduce problems in modeling a system.
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